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Visual Compliance: Task-Directed
Visual Servo Control

Andrés Castaiio and Seth Hutchinson, Member, IEEE

Abstract— This paper introduces visual compliance, a new
vision-based control scheme that lends itself to task-level spec-
ification of manipulation goals. Visual compliance is effected by
a hybrid vision/position control structure. Specifically, the two
degrees of freedom parallel to the image plane of a supervisory
camera are controlled using visual feedback, and the remaining
degree of freedom (perpendicular to the camera image plane) is
controlled using position feedback provided by the robot joint
encoders. With visual compliance, the motion of the end effector
is constrained so that the tool center of the end effector maintains
“contact” with a specified projection ray of the imaging system.
This type of constrained motion can be exploited for grasping,
parts mating, and assembly.

We begin by deriving the projection equations for the vision
system. We then derive equations used to position the manipula-
tor prior to the execution of visual compliant motion. Following
this, we derive the hybrid Jacobian matrix that is used to effect
visual compliance. Experimental results are given for a number
of scenarios, including grasping using visual compliance.

I. INTRODUCTION

ENSOR-BASED control is essential if robots are to per-

form adequately in real-world environments. This has long
been recognized by the robotics community, and as a result
much research has been done, both in force-based and vision-
based control. However, it is not enough to merely develop
arbitrary sensor-based control schemes; in order for sensor-
based robotic systems to function autonomously, they must
also be able to automatically create task plans that fully exploit
the available sensor-based control mechanisms. This implies
that task-level goals, which are specified by a human or some
high level process, must be translated into goals that are
specified in terms of controllable parameters.

For the specific case of force-based control, the problem
of translating task-level specifications into low-level control
goals has been addressed by the literature on fine-motion
planning [7], [8], [23], [25]. Equipped with a set of physical
laws that govern motion and friction in the configuration
space, these fine-motion planners are capable of developing
plans that are tolerant of uncertainties in the manipulator’s
position (represented by an error ball in the configuration
space), its trajectory (represented by an error cone), and even
in part dimensions (represented by added dimensions in the
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configuration space [6], [7]). The success of this approach
is due in part to a control scheme that exploits physical
compliance, which lends itself well to the expression of task
level goals [29].

A fundamental limitation of physical compliance-based con-
trol schemes is that they can only be used to control motion
in directions that are tangent to constraint surfaces in the
configuration space [29]. One possible solution to this lim-
itation is to use vision-based techniques to control motion
in the remaining directions. Thus, much research attention
has recently been focused on vision-based control (see, for
example, [2], [3], [9], [10], [15], [16], [22], [27], [30], [31],
[32], [33], [34], [35], [37]). Although vision-based control has
been used successfully for a number of tasks (for example,
in welding applications [1], [5], [21]), none of the systems
referenced above lend themselves to task-level specification of
goals, and therefore, there are currently no automatic planning
systems that can exploit these control systems.

In this paper, we introduce visual compliance as a new
vision-based control scheme that lends itself to task-level
specification of goals. Visual compliance is analogous to
physical compliance. With physical compliance, the robot
end effector maintains contact with some physical surface
during its motion. With visual compliance, the end effector
maintains contact with a visual constraint surface [18]. A
visual constraint surface is a virtual surface, defined by some
object feature in the workspace and that feature’s projection
onto the image plane of a supervisory camera. Thus, visual
compliant motion moves the end effector along a projection ray
that passes through the focal center of a supervisory camera. In
related work, we have reported a motion planning system that
is capable of synthesizing uncertainty-tolerant motion plans
that exploit visual compliance [12], [13]. Here we develop the
control structure necessary to effect visual compliant motion.

Visual compliance is achieved by a hybrid vision/position
control structure. The particular scheme that we use derives
from resolved-rate position control [26], [38]. In general,
resolved-rate position control is accomplished by using a
Jacobian matrix to relate differential changes in the task space
to differential changes in the joint space of the robot. For
visual compliance, we use a hybrid Jacobian, Jy.. The first two
rows of 7, relate differential changes in the robot’s motion to
differential changes in the image that is observed by a camera
(as in [10], [37]). The third row of J.. relates differential
changes in the robot’s motion to differential changes in the
perpendicular distance between the robot end effector and the
camera image plane. Thus, using J.., it is possible to achieve
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motion that “complies” to a specified projection ray through
the camera focal center, moving either toward or away from
the camera while keeping the tool center aligned with the
projection ray. As described in [11], [12], [13], [18], this
type of motion can be exploited for grasping, parts mating,
assembly, and other types of robotic manipulation.

The remainder of the paper is organized as follows. In
Section II, we derive the projection equations that define the
imaging geometry of the camera. In Section III, we derive
equations that can be used to position the robot manipulator
at a specified perpendicular distance from the camera focal
center such that the tool center of the manipulator projects
onto a specified pixel in the image plane. These equations
are used in open-loop control mode to initially position the
manipulator on a visual constraint surface. In Section IV, we
derive Jy., the Jacobian matrix that is used to effect hybrid
vision/position control of manipulator motion. In Section V,
we present results obtained using an implemented robotic
system. Section VI provides a discussion of several related
issues, including how our visual servo control system fits into
the broader context of autonomous task planning. Finally, in
Section VII we summarize the contributions of the work to
date.

II. PROJECTION EQUATIONS

In order to perform visual servo control, the relationships
between the robot’s workspace and the camera image plane
must be known. In general, these relationships are defined in
terms of a set of projection equations that define how points
in the workspace project onto the camera image plane via the
imaging geometry of the camera (see for example [20], [28],
[36]). In this section, we derive the projection equations for
the robotic system shown in Fig. 1. Our derivations closely
follow those given in [20].

The projection of world points onto the camera image
plane can be viewed as a transformation between the world
coordinate frame and the camera image plane coordinate
frame. For the world coordinate frame we use the base frame
for the PUMA 560 robot (see for example [14]). The image
plane coordinate frame is defined by the four vectors C, h, o,
and &, where C is the position of the focal point of the camera
lens (with respect to the world frame), a is the unit vector
perpendicular to the image plane, and % and % are the unit
vectors parallel to the horizontal and vertical directions in the
image plane, respectively.

The camera image plane is actually a truncated plane in the
robot’s workspace, which can be specified by the parametric
equation

z(u, v)
y(u,v)
z(u,v)

=é—f&+uiL+m)

where f is the focal length of the camera. Thus, we may treat
(u,v) as coordinates of a point on the image plane expressed
in the image plane coordinate frame.

From Fig. 1, we observe the following relationships between
the world frame coordinates of a point PP, and the (u, )

Fig. 1. World and image plane coordinate systems.

coordinates of its projection

v (P-0)-h v (P-0)-

f P-¢6-a [ (P-0)-

Using standard video hardware (e.g., digitizers, frame grab-
bers), we will not have direct access to the (u,v) coordinates
of an image plane point. Rather, we will have access to the
discrete coordinates that represent the horizontal and vertical
indices into the discrete image array. We use (I, .J) to denote
these coordinates. Let Au and Av be the horizontal and
vertical sampling intervals. Then the following relations hold

u=(I~1Ip)Au, v=—(J—JyAv

— -

3

Y

where I and Jp are the coordinates of the center of the image
plane that correspond to the origin of the image plane.

After some manipulations, we obtain the following projec-
tion equations

1:13;}?”0”, J:ﬁq-v—cv’ o
P-a-C, P.a-C,
where
Ca=C-4, Cyg=C-H, Cy=C-V
and

H= £h+lod, V= —-Af—vm.foa.

Note that H and V are nor unit vectors in the horizontal and
vertical directions of the image plane. Rather, they are vectors
that represent composite information regarding the horizontal
and vertical directions of the image plane, the horizontal and
vertical sampling intervals of the camera, the focal length of
the camera, and the image plane coordinates of the origin of
the image plane (i.e., the image plane point defined by the
focal point of the camera and the vector —a). A calibration
procedure to derive the relevant system parameters is described
in [4].

III. OPEN-LOOP POSITIONING

Before performing visual compliant motion, the end effector
of the manipulator must be brought into contact with the
specified visual constraint surface. This amounts to positioning
the end effector so that the tool center, represented by P,
intersects a specified projection ray. Stated another way, given
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input (I, J), compute the (x,y, z) workspace coordinates for
the point P. The immediate problem that we face is that
the projection equations given in (1) define a many-to-one
mapping from the robot workspace to the image plane. The
inverse mapping takes single image plane points and maps
them to projection rays. Thus, in order to solve for (z,y, z),
we must supply a third parameter, which is used to select a
single point on the given projection ray. We will use dj, the
perpendicular distance from the focal point of the lens to the
desired workspace point. Thus, solving for (z,y,z) amounts
to computing the intersection of a projection ray with a plane
parallel to the image plane. This is accomplished by solving
a system of three simultaneous equations.

The first two equations that are required are simply the
projection equations for the camera. Rewriting (1), we obtain

(Hy — lag)z + (Hy — Iay)y + (H, = Ia.)z = Cy — IC,,
2)
(Ve = Jag)z + (Vy — Jay)y + (V. — Ja.)z = Cv — JC,.
3

The third equation needed to solve the system is the equation
of the plane parallel to the image plane at a distance d; from
the focal center. The equation for this plane is given by

=

a-P=d, (O]

where d = dr + a - C, and &, ﬁ, and C are as defined in
Section II (see Fig. 1 for a graphical illustration).

Using (2), (3) and (4), a system that determines the in-
tersection between a projection ray from the camera and the
desired plane in the workspace coordinate frame is established.
In matrix form

H,-Ia, H,-1Ia, Cy —-1IC,
Vie—dar. Vy—Jay Cv —JCa

a, ay a. z d

H. - Ta. T
V. - Ja. y| =

Although this type of open-loop positioning is useful for
initially positioning the manipulator near a target projection
ray, open-loop control rarely succeeds in precisely placing
the manipulator to achieve the desired (I,J) coordinates.
There are three reasons for this failure: kinematic errors (i.e.,
uncertainty due to the resolution of the robot joint encoders,
or to robot calibration); camera calibration errors (resulting
from noise in the imaging process); and errors in the camera
modeling (since we use a simple pin-hole approximation to
the camera in the derivation of the projection equations). This
does not adversely affect system performance, since closed-
loop control (which is described in the next section) is used
to effect the visual compliant motion, once the end effector is
near the specified projection ray.

IV. VisuAL COMPLIANCE

As described above, when performing visual compliant
motion, vision feedback is used only to control motion in
directions that lie in a plane parallel to the camera image plane.
To control motion in the direction normal to the image plane,
position control is used (where the feedback information is
obtained by solving the robot’s forward kinematic equations

XYz

Fig. 2. Hybrid-vision/position-control block diagram.

using input from the robot joint encoders). Therefore, to
execute visual compliant motion, we use a hybrid control
approach. Specifically, we use a resolved-rate motion control
approach [26], [38] in which the first two rows of the Jacobian
matrix correspond to vision based control, and the third row
corresponds to the position based control. In the remainder of
this section, we derive this Jacobian matrix, Jy..

We have formulated the control problem as one of con-
trolling the variables I,J,d. Thus, the input to the control
system is a vector [I, Jg,dq)T, which would be determined
by a trajectory planner (see [10] for a discussion of feature-
based trajectory planning). The output of the system is the
vector of observed values [I,J,d]T. A block diagram of this
system is shown in Fig. 2.

The Jacobian matrix used in our resolved-rate control
scheme, Jy., relates differential changes in the parameter
vector [I,J,d]T to differential changes in the (z,y,2)
coordinates of the manipulator (which are expressed with
respect to the world coordinate frame). Note that we use
the tool center (the point midway between the manipulator
finger tips) to define the position of the end effector. This
relationship is given by

I i
'I = jvc y
d Z

We now turn our attention to the first row of J,.. We can
expand (1) for I to obtain

_ zH, +yHy,+zH, - Cy
T zag+yay, +za, - Cy

The partial derivative of I with respect to x is given by

8l _ H.(var +yay +za: — Ca) = as(xH, + yHy + :H. — Cy)
ar (rar + yay + za: — Ca)?

This expression can be rewritten as

P.-H-C
H e — Ay 4——-—H
P-a—-C,
In this form, the quotient term at the right is simply the
projection equation for I in (1) that was derived in Section IL.
We can substitute using this equation to obtain
or 1

——»——HI—G,,I.
oz P-&—Ca( 1)

ar___ 1
dr ~ P.a-C,
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Similar manipulations can be performed for y and z, and
for the second row of the Jacobian, which corresponds to the
J coordinate.

The third row of the Jacobian is obtained by considering
the motion of the manipulator in the direction perpendicular
to the image plane. By taking partial derivatives of (4) with
respect to z,y,z we obtain

od ad od

— =a — =a — =a

Or = gy Y8z i
We may now write the Jacobian as

Hy-a,l Hy—ay! H.—a.l
Pa-Cc, Pa-C, Pa-C,
Toe = | azaed  Vy=ayd  V.—a d
Pa-C, Pa-C, Pa-C,

ay ay as

The discrete-time state space formulation of this system is
given by

I(k+1) I(k)
J(k+1) | = |J(k) | + TvcAtu(k).
d(k +1) d(k)

Assuming that the sampling time At is small, an appropriate
discrete-time control law is given by

u(k) = (JucAt) " e(k)

where the error is defined as

L] Ik
e(k) = [Ja(k) | — |I(k)
da(k)] | d(k)

This result is similar to that given in [16].

V. EXPERIMENTAL RESULTS

In this section we present several experimental results. Our
experimental system consists of a Puma 560 robot, controlled
by a Sun 4/260 using RCCL [17], [24]. The vision system
consists of Datacube hardware and a Sun 3. The vision system
determines the (I,J) image coordinates of the tool center,
and sends these coordinates to the Sun 4/260 via an ethernet
connection. This introduces a delay between the vision and
control system of At (approximately 0.6 seconds). In spite
of this delay and the relatively slow sampling rate of the
vision system, we have been able to achieve good system
performance, as can be seen from the results presented in this
section. In order to simplify the determination of the tool center
image coordinates, a small LED is attached to the robot end
effector.

A differential change in the image of the end-effector does
not necessarily imply a differential change in the motion of
the end-effector. Therefore, it is possible that for small values
of e(k), large values for the control, u(k), may result. For
this reason, when the control input u(k) is large, we scale its
magnitude. This eliminates adverse transient effects associated
with large step inputs.
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Fig. 4. Error behavior for the motion illustrated in Fig. 3.

A. Positioning the Tool Center on a Specified Projection Ray

Our first set of experiments involves positioning the tool
center of the end effector along a specified projection ray, at
a specified distance from the camera image plane. Thus, the
goal position in 3-space is defined by the intersection of the
desired projection ray and a plane parallel to the image plane at
the specified distance from the image plane. Visual feedback is
used to control the position of the tool in the directions parallel
to the image plane and position feedback is used to control the
tool in the direction perpendicular to the image plane.
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Fig. 6. Visual compliance along a specified projection ray, with a perpen-
dicular distance of 100 mm.

Figs. 3 and 4 illustrate the z,y, d errors with respect to the
robot coordinate frame. In this example, the robot is positioned
in contact with a certain projection ray, and is commanded to
move to a second projection ray in such a way that its end
effector will move 100 mm in the x direction of the image
plane while maintaining a constant distance to the camera.
The error in the z direction is reduced to less that 1 cm in
11 seconds. During this time, the error on the y direction is
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Fig. 7. Error behavior for the motion illustrated in Fig. 6.

kept smaller than 1 cm, and the error on the d direction is
kept very near zero. The main reason for the disparity in the
magnitude of the errors is the difference in time delay for the
visual and position loops. An error in the d direction can be
corrected by the trajectory planner using the joint encoders
(every 0.875 ms), while and error in the z,y directions can
only be corrected when a full image is taken and processed
(every 0.6 seconds).

Fig. 5 shows the errors in positioning in I and J as a
function of time. In this example, the manipulator is moved
from a position very near the target projection ray until contact
with the projection ray is made. It should be noted that the
relationship between errors in pixels (measured in the image
plane) and errors in mm (measured in the robot coordinate
frame) are related by the projection equations. Of particular
importance in this relationship is the distance from the robot
to the camera, which was approximately three meters in our
experiments.

B. Visual Compliance

Our second set of experiments involves performing visual
compliance along a specified projection ray. We show the
errors when the robot is moving toward the camera. Fig.
6 illustrates a commanded motion along a projection ray,
and Fig. 7 shows the errors in both the normal and tangent
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Fig. 8. Error in I.J for visual compliant motion.

directions with respect to the world coordinate frame. In this
example, the manipulator is commanded to move forward 100
mm toward the camera using visual compliance. The final
desired position is achieved in nine seconds. The final error in
all directions is smaller than one centimeter. Fig. 8 shows the
errors in I and J as a function of time, for visual compliance
toward the camera.

C. Composite Motion

It is possible to extend the visual compliance paradigm, so
that the manipulator moves to a specified projection ray at
the same time that it is moving in a direction perpendicular
to the camera. This is illustrated in Figs. 9 and 10, where the
commanded motion is toward the camera 100mm, and parallel
to the image plane in the direction of the camera z axis.

D. A Simple Grasping Task

Fig. 11 shows our final experiment, in which visual com-
pliance was used to grasp a Ping-Pong ball suspended in the
robot workspace. In this experiment, the (z,y, z) position of
the ball was not calculated. Rather, the task goal was specified
in terms of visual compliant motions. Specifically, to execute
the grasp, the robot moves its end effector so that one finger of
the robot stays in contact with a projection ray that intersects

Fig. 9. Motion to a new projection ray, with a perpendicular distance of
100 mm.

error x (mm)
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Fig. 10. Error behavior for the motion illustrated in Fig. 9.

the occluding contour of the ball. The three frames on the
left show the robot as it is seen by the supervisory camera.
Note that in all three frames the end effector appears to be
in the same position. The three frames on the right show the
robot from a side view (the three frames on the right were
taken to correspond to the three frames on the left). From this
figure, it can be seen that visual compliance is effected by
regulating the position of the end effector in the image, while
simultaneously moving the end effector in a direction toward
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(e)

Fig. 11. Puma 560 performing a grasp using visual compliance.

the camera. For these experiments, infrared sensors mounted
on the robot fingertips were used to determine when the ball
was within the robot’s grasp.

V1. DISCUSSION

The system that we have presented facilitates visual com-
pliance, which is analogous to physical compliance effected
through the use of force/torque sensing. The analogy can be
extended to the planning system. In related work, we have
developed a planning system that extends the backprojection

planning formalism {7], [8], [23], [25] by allowing visual
constraint surfaces to be included in the boundary of the
backprojection [12], [13]. Our planning system requires as
input a geometric description of the environment and of the
task (in terms of a goal region in the robot confi guration space).
Thus, given a description of the task, our planning system
will derive a motion plan that exploits the visual compliance
capabilities described in the present paper.

Visual servo control, as described in this paper, requires
that a set of features on the manipulator be constantly visible
to the supervisory camera. This is a planning issue that
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we have addressed elsewhere [19]. However, we note that
by construction visual constraint surfaces do not intersect
obstacles (since in such a case the feature that generates
the surface would be occluded from the camera’s view).
Therefore, occlusion is generally not a problem that affects
visual compliance.

Finally, the resolved-rate scheme described in this paper
could be improved by incorporating a predictive component
in the visual tracking system. This could be done in a fairly
straightforward manner, since the robot dynamics and imaging
system parameters are fully known. Such improvements to the
tracking system are the subject of ongoing research.

VII. CONCLUSIONS

We have introduced visual compliance as an alternative to
physical compliance using force control. Qur method relies
on a set of virtual constraints that can be enforced by the
use of vision sensing. The main advantages of our approach
are that (1) visual compliance lends itself well to task-level
specification of manipulation goals, and (2) motion can be
controlled in directions that are not necessarily normal to
physical constraint surfaces (unlike force control). In related
work, we have developed a task planner that directly exploits
the existence of this control system for the synthesis of
uncertainty-tolerant motion plans [12], [13].
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